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An Algorithm for Generating the Sphere Coordinates in 
a Three-Dimensional Osculatory Packing 

By David W. Boyd* 

Abstract. This paper develops an efficient algorithm which generates the pentaspherical 
coordinates of the spheres in an osculatory packing of the three-dimensional unit sphere. 
The algorithm has a tree-like structure and is easily modified so that, given a prescribed 
bound, it counts the number of spheres in the packing whose curvatures are less than this 
bound. The algorithm has been used to produce heuristic estimates of the exponent M of 
the packing, and these indicate that M is approximately 2.42. 

1. Introduction. In a recent paper [3], we described a process for generating the 
pentaspherical coordinates of all the spheres in an osculatory packing of a three- 
dimensional unit sphere. The procedure given there is not practical because each 
sphere in the packing is generated infinitely often, and hence this would be a very 
inefficient way of actually generating the coordinates, requiring a storage of all the 
coordinates and a comparison of each newly generated coordinate vector with those 
already stored. In this paper, we present an algorithm which produces the coordinates 
of each sphere once and only once. Moreover, the structure of the algorithm is 
tree-like and hence presents no storage problems. We describe how the (theoretically 
infinite) algorithm can be modified to count the number of spheres in the packing of 
a given curvature, whose curvatures are less than a prescribed bound. The results 
of a computer implementation of this algorithm are given, which give heuristic 
estimates for the exponent M of the packing, using the technique which Melzak [5] 
used to estimate the two-dimensional constant S. These results indicate that M 2.42. 

2. Preliminary Definitions and Results. We refer the reader to [3] for a more 
complete explanation of the results mentioned in this section. We begin with a unit 
sphere (ball) U, and four open spheres S1, *.. , S4 which are externally tangent to 
one another and internally tangent to U. An osculatory packing of U beginning with 
S. * *. , S, is a sequence C = I Sn} of disjoint open spheres chosen so that S, has the 
largest radius of spheres contained in U\(Sl U ... -U Sn-i), for n = 5, 6, * . . The 
exponent of the packing C is the number 

(1) M = sup{t: Zr, = co = inf{t: Zr, < c}o 

where rn is the radius of Sn. In some cases, there is a unique such packing (up to the 
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order in which spheres of equal radii are listed), and in other cases there are many such 
packings. Our algorithm produces a specific packing of this type, and it is known (see 
[3]) that M does not depend on the radii of the spheres S1, *, S4. The best known 
estimates for M are 

(2) 2.03 < M < 2.8228 ... = (3 + V/7)/2. 

See Larman [4] for the lower bound and Boyd [1] for the upper bound. 
The curvature of a sphere is the reciprocal of its radius. We shall consider the 

exterior of U as a sphere X1 with negative radius and curvature -1. We shall denote 
the spheres S1, * * *, S4 alternatively by X2, * * * , X5. Given any two spheres X and Y 
with radii r, s and whose centres are at distance d apart, we define the separation 
of Xand Yby 

(3) A(X, Y) = (d2 _ - s2)/2rs. 

Then A(X, X) = -1 and A(X, Y) = 1, if X and Y are externally tangent. One can 
coordinatize any sphere Y in terms of X1, ... , X5 by the separation vector 

(4) c( y) = (A( Y, X1), ... , A( Y, X5))T, 

where the superscript T denotes transpose. 
We let A denote the 5 X 5 matrix (,A(Xi, Xi)) so that A = J - 2I, where J is the 

matrix all of whose entries are 1, and I is the identity matrix. We have also that 

(5) =-' 6-'(J - 3I). 

The pentaspherical coordinate vector of Y in terms of X1, ... , X5 is the vector 

(6) a( Y) = 'c( Y). 

From a(Y), one can obtain the Cartesian equations of Y. Suppose Xi has centre 'Ys and 
radius r1, and Q = t2, 3 and Xi has the equation xQ() = 0, where 

(7) x(Q) = (2r)-Y(- - _ ) r 

Then Y has the equation y(Q) = 0, where 

(8) y(Q) = A {a (Y)xi( ): i = 1, * 5, , 

and y(Q) has a form analogous to (7). 
The curvature X of Y is determined from the curvatures e1, *... , E5 of X1, ... , X5 by 

(9) = a( y)TjE 

where E is the column vector (E1, * *, 65)e 

The vectors c(Y), a(Y) and E satisfy the equations 

(10) c(Y)TA'cl(Y) = -1, 

(I 1) a( y)T Aa( Y) = -1, 

(12) E A-E = 0. 

Equation (12) can obviously be written as 

(1 3) (El + + E5)2 3(,E2 + + E2 
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in which form it is often known as "Soddy's formula," being named after a poem 
by Soddy which appeared in 1936. However, the result appears in a much earlier 
paper (1886) by Lachlan (see [3] for precise references). 

The sphere generating process described in [3] generates 5-tuples of spheres 
Xi(a), * * *, X5(a), where a is any vector with a finite number of components, all in 
the set { 1, 2, 3, 4, 5 }. We call the set of such vectors G. By convention, G includes a 
single vector with no components. We let 9 = {Xi(a): i = 1, * * , 5, a E G}, and 
C' = 9\{X1 } . Theorem 10 of [3] shows that the collection C' is an osculatory packing 
of U. For our purposes, we need only know that the pentaspherical coordinates of the 
spheres X1(a), ... , X5(a) are given by the five columns of a matrix A(a) whose 
calculation we will now describe. Let e, (i = 1, *... , 5) be the column vector with all 
components zero except for a 1 in the ith position, and let e be a vector with all 
components 1. Let Ai, i = 1, ... , 5, be the following matrices: 

Al = (e2, e3, e4, e5, e -2el), 

A2 = (el, e3, e4, e5, e -2eA 

(14) A3 = (el, e2, e4, e5, e -2eA 

A4 = (el, e2, e3, e5, e -2e4), 

A5 = (el, e2, e3, e4,e - 2e5). 

If a = (i,, * , ) E G, then 

(15) A(a) = Ail *. Aim. 

Note that the entries of the Ai and hence A(a) are integers. The columns of A(a), by 
Lemma 2 of [3], are the pentaspherical coordinates of Xi(a), ... , X5(a). 

In order to generate 9 as efficiently as possible, we wish to produce an algorithm 
which will generate each X E 9 once and only once. Observing the formation of the 
matrices Ai, we see that if (a, i) = (il. * * *, i,,m, i), then the sets (X1(a), . . , X5(a)) and 
(Xi(a, i), * , X5(a, i)) have four spheres in common, and X5(a, i) is a "new" sphere. 
Thus, apart from the initial spheres X2, ... , X5, we need only generate the spheres 
X5(a) for each a E G. It can be shown, with some effort, that the spheres X5(a), 
with a having components only in the set { 1, 2, 3 }, are all distinct. However, A' = l 
and A2 = I; so there are many relations, in general, of the form X5(a) = X5(:), with 
a id IB, a, f & G. Hence, the "natural" algorithm which would produce all X5(a) 
with a E Gm, successively, for m = 1, 2, ... , would be extremely inefficient. Further- 
more, in practice, one wants an algorithm which produces all X5(a) whose curvatures 
lie below some prescribed bound, and the wide variation in curvatures among the 
X5(a) with a C Gm, for some particular m, would make this naive method even more 
unsuitable. 

3. An Efficient Algorithm. In this section, we describe an algorithm which pro- 
duces all the desired coordinates once and only once. We begin with a preliminary 
version (Lemma 1) which is not quite as efficient as the final version described in 
Theorem 2, since it produces some coordinates twice. However, with the preliminary 
algorithm, it is quite easy to see that all coordinates are produced, while this would 
not be as obvious for the improved algorithm. 
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Let 3c denote the set of coordinate vectors a(X) for X & 9 = { Xi(a): i = 1, * , 5, 
a E G}. It is easily seen that if a is in 3c, then any vector a', whose components are 
permutations of the components of a, is also in 3C. In particular, if a* is the rearrange- 
ment of a into decreasing order, then a* is in 3c. Hence, it suffices to generate only 
those vectors whose components are in decreasing order, and we denote this set of 
vectors by 3c*. If w E 3c*, we shall write 

(16) Uiw = (Aiw)*, 

so that Uiw has components w; + wi (j # i) and -wi, arranged in decreasing order. 
It is clear that each w E 3c* is of the form w = Ui, e * Uie, where il, .., im 

are suitable integers in { 1, ... , 5 }. We may now think of generating 3c* as a list, 
in the following way: We begin with e1, then add to our list Use,, ... , U1e1, then 
repeat with each of the new vectors in our list, and so on. However, if w is in the list 
and wi = 0, it is clear that Uiw = w, so we need not apply Ui. Also if wi =wi+, 
we need not apply Ui. Finally, if x = Uiw has just been obtained, and xi = -wi, 
then Uix = w, so we need not apply Ui to x. We shall see in Lemma 1 that we need 
never apply Ui to w if wi < 0. This will mean Us is never used. 

The reader may verify that the following is the beginning of the list which we obtain 
(writing, the coordinate vectors now as row vectors): 

1 0 0 0 0 (0) 

1 1 1 1 -1 (1) 

2 2 2 0 -1 (2) 

4 4 2 1 -2 (3) 

5 5 3 -1 -1 (4) 

6 6 3 0 -2 (4) 

8 6 5 2 -4 (4) 

The number in parenthesis indicates the number of operations Ui required to obtain 
the given vector. 

LEMMA 1. Let U1, .**, Us be the operations described in the above paragraphs. 
Given any vector w = (wI, ... , w5), with w1 > ... > w5, we say that Ui is admissible 
for w, if wi > 0 and wi > wi+1. Let U(w) be the set of (at mostfive) vectors Uiw such that 
Ui is admissible for w. Let P0 = {(1, 0, 0, 0, 0)}, and Pn = U(Pn1) for n - 1, 2, *.. 

Then, for n > 19 

(a) if W EPn, then w1 > w2 > W3 > 0 > W5; 

(b) for each w E Pn, if W4 > 0 or f 0> W4 = w5, then there is a unique u E Pn- 
and a unique i so that Ui is admissible for u and Uu = w; 

(c) if w E Pn and 0 > W4 > W5, then there are exactly two vectors u, v E Pn-1, 
and corresponding i, j so that w = Uiu and w = Ujv; 

(d) ifm n> .0 and m # n, then Pm, and Pn are disjoint. 
Proof. We shall give the proofs by induction, proving (d) in the form that 

Pm n Pn = 0 if m < n. The results are true, by inspection, if n = 1. To prove (a) 
for Pn, let w E Pn, and w = Uiu with u E Pn-1 and U, admissible for u. Then ui > 0, 
and the components of w are ui + ui (j # i) and - ui in decreasing order. Since 
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(a) holds for u (by induction), we at least have w1 > w2 > 0, so - ui is one of w3, w4 
or w5. Now, by checking all possibilities for i, we can see that 

(17) W3 + W4 + W5 > U3 + U4 + U5 . 

Then it follows by induction that W3 + W4 + W5 _ 1, and hence certainly W3 > 0. 

Since at least one component of w (namely -ui) is negative, certainly w5 < 0. 
To prove (b), let w, u, i be as above. By assumption, w has but one distinct negative 

component, so it must be - ui. That is, w5 = - ui and the other components of u must 
be w1 + w5, * * *, W4 + w5. Since u is in decreasing order, u is determined uniquely. 
The number i is also unique since Uju = Uju for j < i would contradict the admissibil- 
ity of Ui for u. 

To prove (c), suppose w = (a, b, c, -d, -e), where 0 < d < e. We find, by ex- 
tending the list preceding this lemma that n must be > 6. There are two possibilities 
(and we show both hold). 

(i) d = ui for some u E Pn,-, 
(ii) e = vi for some v E Pn-1. 

If (i) holds, then 

u = (a - d, b - d,c - d, d, -d - e)*e P,. 

By (b) or (c) for u, u has a predecessor in P_2 which we may take to be 

U' = (a - 2d - e, b - 2d - e, c - 2d - e, d + e, -e)* E P.-2, 

and, by the same argument, u' E U(u"), where 

U" = (a - 2d - 2e, b - 2d - 2e, c - 2d - 2e, d, e)* E P.-3 

The vector u" is symmetric in d and e; however, we can obtain successively 

v' = (a - d - 2e, b - d - 2e,c - d - 2e, d + e, -d)* E U(u") C P.-2 

and 

v = (a - e, b - e, c - e, e, -e - d)* E U(v') C P.-, 

Finally, we see that w E U(v). Note that u 5? v, for if u = v, then since d 5z e, we 
must have d equal to one of a - e, b - e or c- e. If, say, d = a - e, then b - e 
c - d and c - e = b - d are the only possibilities and together these imply d = e, 
a contradiction. Since w has clearly at most two predecessors in P,,, we have proved 
(c). 

Finally, to prove (d), we observe that if w E Pn, n _ 1, then w5 < 0, SO Pn, r( P0, 
0. Now, we use induction on m to show Pm ,n P, = 0 if m < n. For, if w E P,, n 
Pm, then, by (b) or (c), w E U(u), where u E P,, and also u E Pm,-. Thus P,,( n 
Pm1 5? 0, a contradiction of the induction assumption. 

THEOREM 2. For any vector w = (w1, * , w5), let T1 (i =1, ** , 4) be the 
(linear) mapping which maps w into the vector w', where 

Wj = W, + W, if j < i, 

= Wi+1 + Wi if i < j < 5. 

= W, ifj =5. 
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We say that T, is admissible for w under the following circumstances: 
(i) if i = 1, 2, 3, we require wi > wi+1, 

(ii) if i = 4, we require 2w4 + w5 _ 0 and w4 > 0. 
Let T(w) be the set of (at most four) vectors Tjw such that T, is admissible for w. Let 
Qo= {(1, 0, 0,0, 0) } and Q = T(Qn_1) for n=1, 2, ***. Then Q =Pn (n=0, 1, *..), 
where Pn is as in Lemma 1. Also, for each w C Qn, there is a unique u C Q,-1 and a 
unique i for which T, is admissible for u and w = T u. 

Suppose that X E 9 and has the coordinate vector a = a(X). Then, there is a unique 
n and w E Q,. such that a* = w. Furthermore, for any n, if w C Q", then all distinct 
permutations of w are coordinate vectors of spheres in 9. 

Proof. We shall show that Q,. = Pn of Lemma 1. This is clearly true for n = 0 
and we proceed by induction. Suppose w e Q, and w = Tiu, with u C Qne l = Pn-l 
and Tj is admissible. Then we claim Tju = (Tiu)* = Uju. We need only show that 
w5 ? w4. This holds if and only if 2ui + u5 _ 0. For i = 4, this is part of requirement 
(ii) and for i = 1, 2, 3 it follows from u3 + u4 + u5 ? 1 proved in Lemma 1, since 

2ui + u5 > Ui + U4 + U5 > U3 + U4 + U5 

for i = 1, 2 or 3. 
Hence, we have Qn C Pn. To show equality, suppose w C Pn. Then by Lemma 1 

(b), (c), W has one or two predecessors in Pn-l = Qn-l. In either case, one of the 
predecessors is 

U = (W1 + W5, * , W4 + W5, -W5)*, 

and, if ui = -w5, then 2ui + w5 = W4 -W5 > 0, and ui > 0, so that if i is chosen 
maximally, T, is admissible for u, and so w = Tju C Qn. It is easy to see that (ii) 
rules out the other possible predecessor for w, so w has a unique predecessor in Qn-l 

Finally, our remarks at the beginning of this section prove the final statement 
of the theorem. 

Remarks. 1. We shall call the set of spheres whose coordinates are rearrangements 
of a vector in Pn = Qn the nth generation of spheres. It is clear that n is the minimal 
integer for which X e 9 has a representation as Xi(a) where a has n components. 

2. There are certain aspects of the algorithm described in Theorem 2 which are of 
importance in practice. We may assume that the curvatures E1, ... , 5 of X1, ..., X5 

satisfy -1 = E1 < E2 ? ... ? *_ , In addition to the vector E, we use the vector 
K = E-1c which has components 

(18) Kj = (E1 + ***+ ? 5 - 3e7)/6. 

According to (9) and (6), the curvature E(X) of a sphere X is given by 

(19) E(X) = a( X)T = C(X)TK. 

We shall assume always that Kj ? 0 for all j. The geometrical meaning of this is that 
the centre of U lies in the convex hull of the centres of X2, * * *, X5. We claim that this 
condition implies that if u e Pn (n ? 1) is the coordinate vector of a sphere X, and 
w = Tju (with T, admissible) corresponds to a sphere Y, then the curvatures of Y 
and X satisfy 

(20) E(Y) > E(X). 
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To see this, one notes that c(X) and c(Y) are vectors with components which are 
integers ? 1 (since X E 9 is not one of X1, * , X5 so A(X, Xi) > 1). By direct com- 
putation, 

ci(Y) = C7(X), 1 ? j < i, 

(21) = cil(X), < j < 5, 

= c,(X) + 6ui, j= 5, 

so that cj(Y) > cj(X) for all j, from which (20) follows. 
Also, note that if u E P,,, then the set T(u) represents the coordinates of up to 

480 = 4 X 5! spheres of 9, corresponding to the admissible T1, * , T4 and the 
distinct permutations of each Ttw. We claim that, of these spheres, the one with least 
curvature is that with components Tau, where i is the largest value for which Tj is 
admissible. To see this, note that w = Tju is in decreasing order, so if 0f is any permuta- 
tion of 1, , 5 }, then e1 < ?.. < E5 implies 

(22) E1 w1 + + E5W5 <? 1 Wa(l) + + E5WWY(5). 

Also, if j < i, and Tj is admissible, and if Y and Z are the spheres corresponding to 
Tiu and Tiu, respectively, then (21) shows that 

(23) E( Y) < e(Z) 

In practice, one does not permute the vector w, but rather, permutes the curvatures 
Ei since this need be done only once. The various vectors w are weighted as appropriate 
for the number of distinct permutations. For n > 3, if w E Pn, it can be shown that 
there are only three possibilities; either wI, * , w5 are distinct or else there is one 
equal pair of wi or else two such pairs. 

3. We mentioned earlier that the algorithm has a tree-like structure. In other 
words, each w in U Pn has a unique representation in the form 

w = T . (n) 
... Ti (1)ei, 

where Ti (k) is admissible for Ti (k-l) ... T, (1 )el for each k = 1, *.* , n. Thus, one can 
imagine an infinite tree: The nodes at height n correspond to the vectors w in Pn; 
edges lead from a w in Pn to the vectors in T(w) in Pn+?. Assigned to each node w in 
the tree is the number T E = sw1 + * * + E5W5 corresponding to the least curvature 
of the spheres corresponding to that node (by (22)). We set an index fln) for each 
level initially at 4 for all n, and generate successively w0 = el, T, (0)wo = wI, TZ (awl = 
W2 * * where i(n) is the largest i ? f(n) for which T, is admissible for wi. Once T, n 
has been used, we set f(n) = i(n) - 1. To determine the number of spheres W(m) for 
which m < WTE < m + 1 for all integers m < B. say, we proceed upward until 

nTe > B. With each new node generated, we increase W(m) by 1 for each sphere 
corresponding to this node which has curvature q, with [X] = m. Once WTC > B, 
we reduce n and proceed upward along a new branch corresponding tof(n). Iff(n) = 0, 
we reduce n further. Eventually, this will generate all spheres. Notice that we need 
provide storage only for N coordinate vectors, where N is such that for n _> N, 
WTc > B for all w E P, The value of N is quite small, of the order of magnitude 
of V\B. 
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4. Results of a Computer Study. Using Theorem 2 and the succeeding remarks, 
we wrote a computer programme in FORTRAN which counts the number W(C) 
of spheres in the packing C' which have the integer part of their curvature equal to C 
for all C < CMAX, where CMAX is prescribed, as are e1 = -1, E2, * * *, e5 satisfying 
(13), and with K > 0 where Ki is given by (17). Using the values of W(C) so obtained, 
a linear law in log C is fitted to the cumulative sum log (I W(i): i < C) by using 
least squares. In this way, one obtains an approximate relation 

(24) 1 { X E C': e(X) < Cl I AC- 

where M' should be an approximation to M. In [5], Melzak used a similar method to 
estimate the two-dimensional packing constant S and obtained the heuristic result 

(25) So 1.306951. 

Since this author has recently [2] shown rigorously that 

(26) 1.300197 < S < 1.314534, 

the method would seem quite reliable. 
For the initial choice of curvatures (- 1, 2, 2, 3, 3), suggested by Soddy's "bowl of 

integers" [6], the curvatures of all spheres are clearly integers. In this packing, the 
two spheres of curvature 2 are tangent along a diameter of U and six spheres of 
curvature 3 touching U and the two spheres of curvature 2 can be arranged in a ring 
around the central spheres. (This corresponds to the matrix relation A' = I.) Thus, 
the packing C' is unchanged by a rotation through ir/3 about the diameter common to 
X1, X2 and X3. This means that W(C) is divisible by 6 for all C > 2, which is a good 
check on the computations. For CMAX = 300, the running time on the IBM 360/65 
at the University of British Columbia was 135 seconds. The total number of spheres, 
with curvature C at most 300, is 305,594 and these occupy .94727 of the volume of U. 
The values of A and M' of (24) are A, = .2988455 and 

(27) M= 2.42009. 

An interesting point is that in this packing the curvature of each sphere satisfies 
C _ 0, 2 (mod 3). This is easily proved once it is noted (by induction) that all coordi- 
nate vectors in U Pn, modulo 3, are rearrangements of one of the three types 
(1, 1, 1, 1, 2), (0, 2, 2, 2, 2) or (0, 0, 0, 0, 1). The number N mentioned in Remark 3 of 
the previous section (the "height of the tree") was 38. Much information was printed 
out which is not reproduced here. In particular, the 300 values W(C) were printed, 
and the numbers of spheres of curvature at most 300 in each generation Pn, n = 
1, , 38, were printed. 

In another run with initial curvatures (-1, 2, 2, 3, 3) and CMAX = 100, we 
produced a list in lexicographic order of the coordinate vectors w, and the corre- 
sponding separation vectors. 

Another interesting set of initial curvatures is (- 1, a, a, a, a) where a = 1 + V6/2. 
This corresponds to a configuration in which X2, * , X5 have their centres at the 
vertices of a regular tetrahedron. With CMAX = 600, running time was 94 seconds. 
There were 1,693,595 spheres counted, distributed into 49 generations. The values 
of A and M' were A = .3149755 and 
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(28) M= = 2.41748. 

From (27) and (28), it seems reasonable to expect that M 2.42. A rigorous justifica- 
tion of this would be of considerable interest. Even more interesting would be a 
rigorous justification of the method itself, but this would seem to present considerable 
difficulties. 
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